If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=94
We move all terms to the left:
2x^2-(94)=0
a = 2; b = 0; c = -94;
Δ = b2-4ac
Δ = 02-4·2·(-94)
Δ = 752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{752}=\sqrt{16*47}=\sqrt{16}*\sqrt{47}=4\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{47}}{2*2}=\frac{0-4\sqrt{47}}{4} =-\frac{4\sqrt{47}}{4} =-\sqrt{47} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{47}}{2*2}=\frac{0+4\sqrt{47}}{4} =\frac{4\sqrt{47}}{4} =\sqrt{47} $
| -255/28=6/7x-1/2X-9 | | P(t)=8000(1.08)t | | 1.4x+1.1=8.3-1x | | 3x+10•2.5=55 | | x-5/9=4/5 | | 1/3-4x+1/3=3/4-1/3 | | -2(3x-4)+1=2x-1 | | −9x−2(−3x+3.7)+2=-10x+1.6 | | 5d+2=12-d | | 5=j-86/2 | | -5r=-21 | | 7+x+3=42 | | 5(2x+6)=-20+10 | | |3-5x|=8 | | 5(3x-2)=5(4x+10 | | 4x+1=7(3x) | | 094x=125 | | 4-10n=74 | | 6-8+2x=x+4 | | 2x+19+11=x+22 | | 6+2x-2=x+9 | | 6.7=-6+x | | 8=4^3x-2 | | x-20+2x+22=12 | | a/6-8=-11 | | x+19+2x-18=16 | | 8=4^-x-5 | | 1/3x+7/9+4x=155/99 | | 11x+16+4x+13=66 | | 8x+2+10x=74 | | x+130=151+x+41 | | 145+x=158+x+33 |